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Abstract: One of the serious problems faced by the Brazilian municipalities is the 
scarcity of resources for building education infrastructure. This asks for an 
optimal allocation of the available resources that includes, among other things, 
a rational spatial arrangement of the supply points (i.e., schools) in order to 
increase the demand coverage (i.e., students). If it is possible to foresee the 
regions where the demand is going to be concentrated, it is then possible to 
plan the location of new facilities and to assess the impact on the future level 
of service of the entire system. Considering that one of the consequences of 
the location-allocation process is the distribution of trips from demand points 
to supply points throughout the city, therefore affecting the overall intraurban 
accessibility conditions to essential services such as education, there is a 
strong need of models that planners can rely on to predict the future trip 
distribution patterns. As a result, the objective of this work was to evaluate the 
performance of Artificial Neural Networks (ANN) when applied to spatial 
interaction models, the so-called Neural Spatial Interaction Models. This was 
done in a practical context, in contrast to the more theoretical works 
commonly found in literature. The practical application showed that the neural 
spatial interaction model had different performances when compared to the 
traditional gravity models. In one case the neural models outperformed the 
gravity models, while on the other case it was just the opposite. The 
explanation for this may be in the data or in the ANN model formulation, as 
discussed in the conclusions. 
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1. INTRODUCTION 

The spatial interaction models were amongst the most studied topics in 
the field of Transportation Engineering in the second half of the last century. 
According to Black (1995), research in the area looks essentially for ways to 
improve the knowledge of the factors influencing trip flows. It also focuses 
in the development of methods that can help urban and regional planners to 
forecast the future displacements. There are different approaches for 
modeling the problem of spatial interaction, such as the intervening 
opportunities models, and the gravity models. While the use of the former is 
not very common in practical applications, the latter are largely employed in 
transportation planning practice and also in theoretical studies. The use of 
emergent techniques, such as the Artificial Neural Networks (ANN), for 
modeling the problem has also been tested in the last decade of the 20th 
century, as can be seen in the works of Openshaw (1993), Black (1995), 
Fischer, Reismann, et al. (1999), and Fischer and Reismann (2002). 

According to Fischer and Reismann (2002), except for their high 
processing time, the neural models are better than the classical gravity 
models in terms of general performance. That statement was the starting 
point of the present study, which is a contribution for a larger project aiming 
the development of a Spatial Decision Support System for an integrated 
management of health and education facilities at the local level (Lima, Silva, 
et al., 2003). The objective of this particular study was to evaluate the 
performance of Spatial Interaction Models based on Artificial Neural 
Networks when dealing with different datasets taken from an actual 
situation. One of the challenges here is to deal with databases that although 
large are not always necessarily reliable. 

This study, which is essentially based on a practical application, was 
meant to improve the knowledge about temporal and spatial changes of the 
demand for education infrastructure. That is a key point in the construction 
of planning scenarios for managing not only the demand but also the supply. 
In such a way, several alternatives can be tested, such as the reduction of 
travel distances due to demand relocation or the best locations for opening 
new educational facilities. Two datasets provided by the Secretary of 
Education of São Carlos, which is a medium-sized Brazilian city in the state 
of São Paulo, have been used to test the models performance in practical, 
real-world conditions. The datasets contain information about children 
attending day-care centers and elementary schools in two different years, 
2000 and 2001. 

The data of children from 0 to 6 years-old attending the municipal day-
care centers in the year 2000 were initially used for training and validation of 
the ANN models. Later, these models were used for estimating future trip 
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flows. The estimates were compared to the actual flows observed in 2001 in 
order to test the generalization capability of the models. The same procedure 
was carried out with the data of children from 3 to 6 years-old attending the 
EMEIs, which in Portuguese stands for Escolas Municipais de Educação 
Infantil, or Municipal Schools for Children Education. 

The performance of the models was evaluated through a comparison of 
actual data with the results obtained for the different datasets analyzed with 
the two modeling approaches: the neural models and the gravity models. 

In sections 2 and 3 of this document we discuss some aspects involving 
the data used in this study and the basic characteristics of the spatial 
interaction models. The evaluation of the models performance is carried out 
in section 4, in which the estimates of the gravity models are compared with 
the estimates of the neural models. Finally, in section 5 are presented the 
conclusions of the application, followed by the references, in part 6. 

2. THE DATA 

The data used in the present study show changes in spatial aspects of the 
demand for municipal educational services in the city of São Carlos 
throughout two years. The basic information gathered was the home address 
of the children registered in all public day-care centers and EMEIs and the 
corresponding locations of these educational facilities in the years 2000 and 
2001. 

Lima, Naruo, et al. (2001) were able to find the exact location of most 
children registered in the public educational system of São Carlos in the year 
2000 using official data provided by the municipal government. The basic 
information used in that case was the home address of all students registered 
in the facilities under analysis. In order to correctly locate the children on a 
city map, that information was then combined with an address database built 
by the municipal agency in charge of water distribution and sewage disposal, 
which has an excellent address recording system based on geographic 
coordinates of land parcels. 

The work started by Lima, Naruo, et al. (2001) was extended for the 
present study with data of the children attending the educational facilities in 
2001. As in the case of the previous work, the data available in the databases 
used had to be carefully examined before trying to match the records using 
the address as a common reference. The students’ addresses that were not 
properly typed were then fixed or replaced by the right street names. After 
that procedure, a Geographic Information System was used to spatially 
locate the new data. In practical terms, it means that we were able to find 
each precise address location on a map of the city streets.  
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That included not only the students but also the facilities they were 
assigned to, as shown in Figures 1 and 2. While Figure 1 shows the spatial 
distribution of the children attending day-care centers in the year 2001, 
Figure 2 displays the information of the demand per EMEI in the year 2001. 
Later on, GIS tools were also used to calculate the network distances from 
each demand point to the corresponding day-care center or EMEI. 

 

Figure 1. Spatial distribution of public day-care facilities in São Carlos in the year 2001 and 
respective demand 
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Figure 2. Spatial distribution of EMEIs in São Carlos in the year 2001 and respective demand 

3. THE SPATIAL INTERACTION MODELS 

Once the demand and supply points were located on the map, the 
identification of the flows among them was straightforward. The demand 
points were initially aggregated according to the limits of the 245 census 
tracts (CT) in which the city has been divided in the year 2000 by the 
Brazilian census bureau. The centroids of those CT were then assumed as the 
origin points of all displacements in each particular area. The same 
procedure was carried out for day-care centers and EMEIs in the years 2000 
and 2001. Next, the number of trips attracted to each facility, the total 
number of trips produced in each CT, and the travel distances from all 
centroids to all facilities (day-care centers or EMEIs), was obtained. The 
location of all demand (centroids) and supply points is shown in Figure 3 for 
the case of day-care centers. An overview of the data is presented in Table 1. 
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Table 1. Summary of the data applied in the spatial interaction models. 
Facilities Year Supply points Demand points O/D pairs 

2000 10 245 2450 Day-care centers 
2001 11 245 2695 
2000 22 245 5390 EMEIs 
2001 23 245 5635 

 

 

Figure 3. Demand (CT centroids) and supply points (public day-care centers) 
 
The data of the year 2000 were randomly split in three data subsets for 

each of the two different kinds of facilities. While the first subset, which had 
fifty percent of the records, was used for training the neural networks, the 
second and third subsets, both with twenty-five percent of the records, were 
respectively used for validation and query. The absolute number of records 
in all subsets is shown in Table 2. Also shown in Table 2 is the total number 
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of records of the year 2001. In order to test the generalization capability of 
the models, the total number of trips associated to the actual origins and 
destinations taken from those records were applied as input data in the 
trained networks for estimating the 2001 flows. 

 
Table 2. Absolute number of records in the subsets used for training, validation, and query in 
the case of public day-care centers and EMEIs 
Facilities Year Training Validation Query Total 

2000 1225 613 612 2450 Day-care centers 
2001 - - 2695 2695 
2000 2695 1348 1347 5390 EMEIs 
2001 - - 5635 5635 

 
Before introducing the data in the ANN, they were normalized as shown 

in Equations (1) and (2). The normalization interval was between 0.1 and 0.9 
to avoid problems in the calculation (Equation (3)) of the mean relative error 
(MRE) if dealing with actual values equal to zero. 
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where: Yi = normalized value; 

Xi = actual value; 
Xmin = minimum actual value; 
Xmax = maximum actual value; 
Ymin = minimum normalized value (0.1); 
Ymax = minimum normalized value (0.9). 
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After the pre-processing phase the data were introduced in the software 
EasyNN-plus, which simplifies many of the steps needed for creating simple 
and efficient neural network models. The software can be used to build 
Multilayer Perceptron networks with up to three hidden layers, although the 
developer himself states that most real-world problems can be solved with 
one or two hidden layers (Wolstenholme, 2002). The EasyNN-plus package 
uses a backpropagation algorithm and a sigmoidal function to build the 
models. The data needed for training the network can be generated with 
simple text or spreadsheet software. In addition, the program can either 
assume values for the learning rate and momentum or let it up to the user. 
After the models are built, they can be used for estimating output values. The 
comparison of these values with the actual values making use of a 
performance measure (such as the MRE) makes possible to select, among 
the many alternatives built, the ANN model that produce the best estimates 
of the actual values. 

4. EVALUATION OF THE MODELS 

In order to evaluate the performance of the neural spatial interaction 
models, we have calculated the mean relative error (MRE) for each network 
configuration tested. The results are presented and discussed in this section. 
Starting with the parameters suggested by the package EasyNN-plus we have 
built networks with one or two hidden layers, with different number of nodes 
in each of the hidden layers, and with distinct learning rate (L) and 
momentum (M) values. The schemes shown in Figures 4 and 5 have the 
values of L and M grouped according to the distinct network topologies 
tested. In those Figures, the average and standard deviation of MRE values 
for the three groups of data randomly selected as training and validation 
subsets are also presented for each network tested, along with the results of 
the query data in the right-hand boxes. The latter are characterizing the 
generalization capability of the different ANN models. 
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Figure 4. Performance of the neural spatial interaction models when applied to the case of 
day-care centers 
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Figure 5. Performance of the neural spatial interaction models when applied to the case of 
EMEIs 
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4.1 Analysis of the results obtained with neural spatial 

interaction models and with gravity models 

The data of the year 2000 were also used in both cases (i.e., day-care 
centers and EMEIs) to calibrate traditional doubly constrained gravity 
models, which were subsequently used for estimating the flows in the year 
2001. Again, the average and standard deviation of MRE values were 
calculated in order to evaluate the models’ performance. 

 
Table 3. Results obtained with the gravity models and with the best neural spatial interaction 
models 

MRE Facilities Model 
Average SD 

Doubly constrained gravity model 0.1353 0.3263 Day-care centers 
Neural spatial interaction model 0.0899 0.1708 
Doubly constrained gravity model 0.0456 0.1484 EMEIs Neural spatial interaction model 0.0666 0.2854 

 

Figure 6. MRE values obtained with the neural spatial interaction models and with the gravity 
models 

 
They are shown in Table 3, along with the best values obtained for the 

neural spatial interaction models. A visual comparison of the average MRE 
values of all models can be done in Figure 6. It is important to highlight that 
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we were referring in that case to the last column of Figures 4 and 5 (i.e., the 
100% query subset), because of the focus of our analysis is on the 
generalization capability of the models. 
The results presented in Table 3 and in Figure 6 showed that one 
configuration of the neural spatial interaction models had clearly 
outperformed the gravity model in the case of the day-care centers. In the 
case of the EMEIs, however, the best results were obtained with the gravity 
models. It is interesting to notice the fact that in all cases the models were 
more accurate when estimating the flows to EMEIs than to day-care centers. 

5. CONCLUSIONS 

The comparative analysis between the results obtained with the neural 
spatial interaction models and the doubly constrained gravity models for the 
case of day-care centers showed the superiority of the former, which 
produced more accurate estimates than the latter, although only in one 
configuration. In contrast, in the case of EMEIs the gravity models had the 
best performance. In addition, all models were more accurate in predicting 
the flows to EMEIs than to day-care centers. The explanation for that may be 
in the data or in the ANN model formulation, as discussed next. 

The spatial distribution of the children in the case of day-care centers was 
quite irregular, while in the case of EMEIs they were clearly clustered 
around the facilities they go to, as shown in Figures 1 and 2. The likely 
explanation for the somehow unexpected spatial distribution pattern of the 
day-care center attendees (Figure 1) may be in the fact that the facility 
choice is more strongly influenced by the parents’ work location than by 
their home location. As work location data is not available to the models, 
which rely only on the total trips produced in the CTs and attracted to the 
facilities, and on the distances between the points of demand (i.e., home 
locations grouped in the CT centroids) and supply (i.e., facility locations), 
this negatively impacts the models’ performance. That is not the case of the 
EMEIs, however, where the students’ home location is clearly connected to 
the school chosen (Figure 2). The regular spatial distribution of the children 
around the facilities made the prediction task easier for both model types, as 
indicated by the MRE results shown in Table 3 and Figure 6. 

It is interesting to observe that the neural spatial interaction models were 
remarkably able to capture, although only in one case, the irregular spatial 
distribution pattern of the children in the case of day-care centers therefore 
producing better estimates than the gravity models. What is not clear, 
however, is their performance in the case of the EMEIs. Although better than 
the performance in the case of the day-care centers it was worse than the 
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performance of the gravity model (Figure 6). Even though, the results of the 
neural spatial interaction models were not bad. Thus, the case discussed here 
stressed the promising role that those models can play in practical 
applications of education, and to a certain extent, health facilities 
management. The quality of their predictions is crucial in the evaluation of 
future scenarios of demand and supply spatial distribution aiming the 
reduction of travel distances obtained either by the demand relocation or by 
the creation of new facilities. 

What seems to be an important conclusion of this study is the fact that 
certain ANN model configurations can outperform the gravity models. That 
was once observed in the case of day-care centers despite the irregular 
distribution of demand points, and it is probably the case with the EMEIs if 
more ANN configurations were tried. The challenge here lies on developing 
and applying in real-world conditions efficient methods to select the ANN 
configuration that better models the problem, such as Genetic Algorithms or 
the bootstrapping approach suggested by Fischer and Reismann (2002). In 
addition, given the results obtained in the case of the EMEIs, a point that 
deserves further investigation is the assumption that those models could be 
improved by any additional input data that also has influence on the facility 
selection process, such as the school attractiveness measures used by 
Almeida and Gonçalves (2001). Considering the difficulty for obtaining this 
sort of data, from a practical standpoint this may have, however, more costs 
than benefits. But it is certainly worth investigating. Moreover, the statement 
that both models performed better with the day-care centers data than they 
did with the EMEI’s data is not necessarily true. It could be that the EMEI’s 
data simply has a smaller variance, and so errors seem smaller when 
amalgamated using the MRE formula. Therefore, other performance 
measures should be also tested in the future. 
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