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ABSTRACT 1 

This paper presents a pedestrian route choice model and its calibration with real data. The model 2 
explicitly represents interaction between pedestrians as an impedance force influences pedestrians 3 
route choice. This model approach is inspired by friction forces equations, considering pedestrians 4 
avoid passing near other pedestrians with high relative velocity. Route choice process is a function 5 
of impedance force and route length. Social force model was used to model pedestrians walking 6 
behavior. Calibration was based on data acquired from a real experiment developed in a simplified 7 
network. Data collection was based on video analysis. The paper presents and discusses results 8 
from calibration processes. This model differs from others pedestrians’ route choice model because 9 
it seamlessly incorporate pedestrians social force model into route choice decision process. 10 

Keywords: route choice, model calibration, social force, pedestrian simulation, pedestrian 11 
behavior. 12 

1. INTRODUCTION 13 

Simulation of pedestrians is a complex task. In order to represent motion of pedestrians more 14 
realistically, models are required to simulate several processes, including sense and avoidance of 15 
obstacles, interaction with other pedestrians and route choice. Social force model has been 16 
successful in reproducing various observed phenomena on pedestrian simulation. Collective 17 
behaviors frequently emerge from interactions among individuals, such as shock waves in dense 18 
crowds, lanes of uniform walking directions in pedestrian counter flows, circulating flows at 19 
intersections or oscillating flows at bottlenecks [1][2][3]. This phenomenon, also called self-20 
organization, is an emergent behavior arises from interactions between agents. Studies of self-21 
organization in pedestrian crowds include pedestrian streams in corridors or alleys [4][5][6] and 22 
movement of pedestrians through a waiting crowd [5][7]. More complex studies consider escape of 23 
disoriented people from a room [8]. Understanding pedestrians´ behavior and how routes are 24 
chosen is essential for planning and designing public and private infrastructures. 25 

Majority of pedestrians’ models can be classified into two categories: (i) models where 26 
pedestrians/agents don't have imbedded route choice algorithms (route choice process can or 27 
cannot emerges from simulation) and; (ii) models where agents have imbedded route choice 28 
algorithms [9]. 29 

Selection of alternative routes in the first category happens as self-organization phenomena. This 30 
phenomenon is an emergent behavior arises from interaction between agents. These models are not 31 
suitable for wide-open spaces and complex urban networks. 32 

Models from the second category present explicit route choice capabilities. Pedestrians adopt some 33 
sort of function to find routes to destination. These models can present static or dynamic route 34 
choice process. Static route choice models are built on the assumption pedestrians walk along 35 
shortest route, defined before the trip starts, and try to walk through this route while avoiding 36 
collisions. Dynamic route choice models differ from their static counterparts on the sense they 37 
represent route changes over time. They aim to provide a sounder representation of route choice 38 
process, emulating behavior of individual pedestrians while considering variations in the 39 
environment. 40 

Several walking processes, such as route selection strategies, are based on subconscious decisions. 41 
Perception of distance and directness are the most common reasons for choosing a particular route 42 
[10]. Pedestrians frequently choose the shortest route, although they are not aware of this utility 43 
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maximization process [11]. Most models presented in the literature are concerned only with the 1 
quickest or shortest route, like Kirik et. al. [12], Dressler et. al. [13] and Lämmel et. al. [14]. 2 
However, other factors play an important role in route choice behavior, such as: peoples’ habits, 3 
number of crossings, pollution, noise levels, safety, shelter from poor weather conditions and 4 
stimulations of the environment [15].  5 

Most relevant route choice models are concerned with pedestrians' evacuation. In Kretz et. al. [16], 6 
for example, pedestrians routes are chosen based on the minimal remaining travel time to the 7 
destination. Patil et. al. [17] propose an interactive algorithm to direct and control crowd 8 
simulations. Model presented by Treuille et. al. [18] unifies route planning and local collision 9 
avoidance by using a set of dynamic potential and velocity.  10 

Teknomo [9] and Teknomo et al. [19] described an approach based on route choice self-11 
organization to model the dynamics of mobile agents, such as pedestrians and cars on a simple 12 
network graph. This modeling approach is based on the route choice self-organization of multi 13 
agents. The agents decide, when reaching a vertex, which edge to enter next. This decision is based 14 
on a set of rules regarding the agent’s observation of the local environment. The model simulates 15 
only one-directional movement from the origin to the destination vertex. In order to represent 16 
complex networks, such as urban scenarios, models need to include route choice capabilities.  17 

Calibrating a pedestrian route choice model is a complex task mainly for two reasons: (i) Many 18 
factors interfere on pedestrians route choice, (ii) data collection is difficult. In real environments, 19 
pedestrians may change routes for many reasons not subject of this study, as pavement conditions, 20 
safety, the presence of stores, and others. [15]. Tracking pedestrians along real outdoor and indoor 21 
environments is difficult due to limited view of the modeled environment. 22 

There are many different technologies regarding data collection of pedestrians. However, the 23 
manual data collection and the computer vision are the most common in the literature [20]. Some 24 
authors use video images of pedestrians recorded on a controlled environment [21][22][23]. This 25 
approach enables the study of a particular variable of interest without disturbs of other 26 
uncontrollable environment variables. In a controllable environment, the automatic detection and 27 
tracking of a pedestrian is easier due to facilities of positioning video cameras with a good view 28 
and the possibility to use colored markers for pedestrians’ identification. 29 

A pedestrian model calibration comprises several aspects. There are measurable variables as 30 
speeds, observable elements as avoidance of obstacles and other pedestrians and also behavioral 31 
aspects related to route choice preferences. The overall behavior and patterns of moving can be 32 
extracted by some measures as travel times, counting pedestrians and average speeds [24]. 33 
Schönauer at al. [25] represent the speed of pedestrians, bicycles and vehicles over a real 34 
environment using a color scale forming a heat map. The generated map characterizes the 35 
environment and allows comparisons between the collect data and simulation analysis. 36 

This paper presents a dynamic route choice model based on a combination of distance and 37 
impedance generated by other pedestrians [26]. The calculation of the impedance is derived from 38 
friction concept proposed by Helbing and Johansson [1]. The impedance generated by friction 39 
equations involve variables related to pedestrian’s profile like the desired speed and other 40 
pedestrians’ velocity. We develop a real data collection experiment to calibrate the proposed 41 
model. The results show model soundly represents the pedestrians’ route choice process. 42 
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2. THE MODEL 1 

An agent-based model is proposed to address the pedestrian route choice problem. Agent-based 2 
models represent agents’ decision-making ability based on agents’ characteristics profile and 3 
perception over the environment. In the proposed model, pedestrians are agents able to choose and 4 
recalculate routes. Pedestrians are not assigned to predetermined routes.  5 

In this model, a route is a set of coordinates followed by a pedestrian form origin to destination. 6 
The route choice process comprises distance and the interaction with other pedestrians. Route 7 
choice looks upon pedestrians' ability to avoid crowded areas and conflicting flows. The proposed 8 
approach allows the definition of several origins-destination pairs, reproducing real urban 9 
environments, like transportation stations, buildings, parks and others. 10 

The aggregation of different levels of abstraction on a simulation model is a complex task. In most 11 
cases, each level of abstraction can be separately modeled on a multi-layer simulation approach 12 
[27][28][29]. The framework adopted to describe pedestrian behavior in this model (Figure 1) 13 
presents a three-layer structure, each layer representing:  14 

(i) demand for travel: set of origin and destination; 15 

(ii) structure of simulation environment: set of nodes composing the simulation graph; 16 

(iii) pedestrians movement, sense and avoidance of obstacles: set of equations and agents 17 
behavior rules. 18 

 19 
Figure 1 – Multi-layer model 20 

 21 

2.1. Demand configuration 22 

Each origin-destination pair is associated to a number of trips and a pedestrian generation rate. 23 
Origins and destinations are associated with the nearest nodes from the graph on the environment 24 
layer. A graph is a set of objects where some pairs of objects are connected by links. The 25 
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interconnected objects are represented by mathematical abstractions called nodes. Nodes are 1 
defined as a pair of coordinates (x,y) in the simulation environment.  2 

2.2. Environment configuration 3 

The environment is described as a continuous space and is composed by geometric entities, such as 4 
rooms, doors, and other obstacles. The environment entities are linked by a graph-based structure. 5 
The graph provides a route to all entities. The graph generation process should guarantee no edge 6 
of the graph intersects any walls or obstacles. 7 

This layer also contains route recalculation areas where a pedestrian can choose between 8 
alternative routes. The role of recalculation areas will be discussed later. 9 

2.3. Pedestrian movement 10 

The social force model [1] describes pedestrian walking behavior regarding the agents’ low-level 11 
motion, collision avoidance and velocity adaptation. The social force model considers pedestrians’ 12 
motion can be described as a superposition of several forces. Helbing and Molnár [6] assume  these 13 
forces are a combination of psychological and physical forces. Pedestrians freely walk on the 14 
modeling environment seeking the next graph node of the designated route. Pedestrians’ 15 
movements are ruled by the sense and avoidance model and are not restricted to a strict set of links.  16 

A pedestrian α who wants to reach his destination r!! takes the shortest possible route. The 17 
pedestrian’s trip will usually have some intermediate destinations, r!! …   r!!. Assuming r!!  is the 18 
next partial destination, the desired direction of motion  e!(t), according Helbing and Molnár [1], 19 
will be: 20 

 e!(t) =
r!! − r!(t)
r!! − r!(t)

 (1) 

Where r!(t) denotes the pedestrian’s α position at time  t.  21 

Any pedestrian α presents a desired speed v!! and a desired direction e!. The desired velocity is, 22 
therefore, v!! t = v!!e!(t).  23 

In case of deviations from the desired velocity, the pedestrian assume a current velocity v! t .  24 
The pedestrian α tends to restore v!(t) within a certain relaxation time τ!. Helbing and Molnár 25 
[1] describe this adaptation by the acceleration term  F!!: 26 

 F!!(v!, v!!e!) =
1
τ!
(v!!e! − v!) (2) 

Pedestrians feel uncomfortable close to other pedestrians and walls; therefore, the presence of 27 
pedestrian β will result in a repulsive force affecting the motion of pedestrian α. Helbing and 28 
Molnár [1] represent this effect by f!": 29 

 f!"(r!") = −∇!!"V!"[b(r!")] (3) 

Where V!" is the repulsive potential, represented by a monotonic decreasing function with 30 
equipotential elliptical lines. The elliptical shape reproduces the pedestrian’s need for more space 31 
in the direction of motion. b is the semi-minor axis of the pedestrian ellipse defined by r!" 32 
(r!" = r! − r!). The resultant force exerted over a pedestrian is a superposition of three forces: 33 
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the force to adapt the current velocity to the desired velocity (F!!), the forces exerted by other 1 
pedestrians (f!"), and the forces exerted by walls and other obstacles. 2 

3. ROUTE CHOICE PROCESS  3 

In this model, the cost of each route is calculated as a function of two factors: route length and the 4 
impedance generated by other pedestrians. The impedance generated by the friction between 5 
pedestrians is assumed to exist even before physical contact, due to the psychological tendency to 6 
avoid passing close to individuals with high relative velocity [1]. Pedestrians seek minimal route 7 
length and minimal friction with other pedestrians. 8 

The pedestrian starts the route choice process as soon as he starts the trip. In order to choose the 9 
route, the pedestrian takes into account the distance between nodes and also the impedance 10 
generated by other pedestrians. Once a route is defined, the pedestrian walks trough this route until 11 
he reaches an area of route recalculation or the final destination. An area of route recalculation is 12 
any location where pedestrians can choose between two or more alternatives routes. 13 

Dijkistra algorithm [30] is adopted to generate valid routes for any origin/destination pair in the 14 
graph. In this formulation, cost is a combination of distance and impedance exerted by other 15 
pedestrians in the simulation. The impedance is calculated by the procedure described bellow. 16 

Figure 2 describes a pedestrian α who wants to find a route between nodes O and D on the graph. 17 
The algorithm traverses the graph assigning the cost for each link between the nodes. Figure 2 18 
shows the parameters involved in the calculation of impedance cost between nodes u and 𝑛 for 19 
pedestrian α. The impedance calculation process generates a fictitious pedestrian α! positioned on 20 
node u and has the desired direction motion,  e!!, oriented to the direction of node 𝑛. The fictitious 21 
pedestrian has the same attributes of pedestrian α (v!!!  = v!!). 22 
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 1 
Figure 2 - The route choice model 2 

 3 

To estimate the impedance exerted over the pedestrian α′ it is necessary to know the pedestrian 4 
desired velocity, v!!! ,when he is trying to walk from r!  to  r! 5 

 

 
v!!! =

r! − r!
r! − r!

. v!! 
                                       (4) 

In order to calculate the impedance exerted by other pedestrians over α′, it is defined a 6 
neighborhood area around the graph nodes, with a radius Rn. The impedance is evaluated by the 7 
difference between v!!!  and the current velocity of other pedestrians β, v!, walking in 8 
neighborhood area. Only pedestrians within the neighborhood area of the node n are considered in 9 
the impedance estimation. 10 

Considering each pedestrian β currently in the neighborhood area of the node n, the absolute 11 
impedance perceived by the pedestrian α′ to walk from u to n, I!! is: 12 

 I!! = v! − v!!!
!

 (5) 
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The value of I!! is normalized over a settable parameter I!"#. The cost perceived by the pedestrian 1 
α to walk from node u to n, W!

!,!, is a balance between distance and the impedance exerted by 2 
other pedestrians: 3 

 W!
!,! =    r! − r! . (1 + I!! /I!"#) (6) 

The described procedure is repeated until all possible routes costs are defined. Pedestrian α 4 
chooses the route with the lowest cost. The algorithm adopted to calculate the motion cost for 5 
pedestrian α′ from node u to n is presented below: 6 
Double Cost_from_node_u_to_n(Node u, Node n, Pedestrian A) 7 
{ 8 
 Double Absolute_Impedance = 0; 9 
 Vector vA = Normalize(n.position – u.position) * A.DesiredVelocity; 10 
 Q = List with all Pedestrians in the simulation; 11 
 12 
 foreach Pedestrian B in Q 13 
 if(DistanceBetween(B, n) < n.NeighborhoodRadius) 14 
  Absolute_Impedance += Module(B.currentVelocity - vA); 15 
 end if; 16 
 endforeach; 17 
 18 
 return Module(n.position – u.position) * (1 + Absolute_Impedance/ Max_Impedance); 19 
} 20 
 21 
One important aspect of model configuration is the distance between the graph nodes. The radius 22 
of neighborhood areas (Rn) is defined as half distance between nodes. Impedance measures 23 
associated to nodes neighborhood areas emulate pedestrians’ sensors. Distance between nodes 24 
must be defined in order to reduce missing pedestrians. If distance between nodes is too large the 25 
impedance estimation could not capture real pedestrians’ organization. On the other hand, if a 26 
graph is too dense, models performance can be jeopardized due to computation costs. 27 

I!"# (Equation 6) is a key parameter in the calculation of the cost perceived by pedestrians (W). 28 
This parameter acts as weighting factor between travel distance and the perceived impedance. The 29 
higher the value of Imax, the lower the willingness of pedestrians to choose an alternative longer 30 
route. The I!"# is a calibration parameter adjusted to reflect the willingness of pedestrians to trade 31 
for longer routes, depending on pedestrian's density on the shortest route. More details about the 32 
calibration process are presented in Section 6. 33 

3.1 Pedestrians level of knowledge about the environment 34 

The pedestrian’s level of knowledge about the state of the environment in an important element in 35 
the route choice process. Pedestrian knowledge concerns his awareness about the number, position 36 
and velocity of other pedestrians in the network. In this study, was considered pedestrians have 37 
partial knowledge of the network conditions and memory of past experiences. During a simulation 38 
period, pedestrians keep in memory the past conditions of the links already traveled. The memory 39 
is available for one simulation only. When another simulation is started, the pedestrians have their 40 
memory reset. Werberich et al. [31] describe the memory process in more details.  41 

4. EXPERIMENT 42 

In order to obtain data to calibrate the model a route choice experiment on a simplified network 43 
was developed. The experiment was set up inside the university campus. The network built for the 44 
experiment had 2-meter-high walls and two opposite entrances. Figure 3 shown the scenario layout 45 
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presenting detailed measurements and corners numbers from 1 to 8. The main goal of this 1 
experiment is to collect data related to the pedestrians’ route choice behavior in a congested 2 
network. For this analysis, volunteer students walked inside the scenario as if they were in a real 3 
environment.  4 

 5 
Figure 3 –Experiment layout 6 

Forty pedestrians were split into two groups of twenty pedestrians to perform the data collection. 7 
The first group walked from the entrance in corner 1 to the exit at corner 8. The other group 8 
walked into the opposite direction (corner 8 to 1). The first group was instructed to follow a fixed 9 
route. The fixed route was defined by corners {1 – 3 – 4 – 6 – 8}. The other group had no specific 10 
orientation about routes. They were free to choose any route from entrance to exit. We call these 11 
two groups by the fixed route group and the free route group, respectively. Figure 4 shows images 12 
of the experiment. White hats identify the fixed route group and black hats the free route group.  13 

Data was collected by video recording. The camera was set at approximately 15m high with a top 14 
view to capture the video images.  15 
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 1 
Figure 4 – Running the Experiment 2 

 3 

The average entrance rate for the fixed route pedestrians is 2 seconds, for free route pedestrians 5 4 
seconds. The large interval time for the free route pedestrians’ entrance ensures they make their 5 
decisions observing the environment, not simply following the previous pedestrian. 6 

The video analysis was made with the aid of software called Tracker [32]. Its main features include 7 
object tracking with position, velocity and acceleration, special effect filters, multiple reference 8 
frames and calibration points. The data collection was a semi-automatic process for video analyses. 9 
The data were collected independently for each pedestrian in the experiment. The software 10 
collected a position (x, y) for a pedestrian at each video frame; the video was recorded with 30 fps. 11 
Figure 5 shows the route for all pedestrian in the free route group. The black dashed line represents 12 
the fixed route. In the density colored map of pedestrians (figure 5) the blue color represent areas 13 
with no pedestrians and red colors represent areas with higher presence of pedestrians. The same 14 
color map was used in the calibration process for a visual feedback. 15 
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 1 
Figure 5 – Collected Data 2 

 3 

The average travel time for the free route group in the experiment was 12.8 seconds with a 4 
standard deviation of 3.6 seconds. The average distance traveled was 10.6 meters with standard 5 
deviation of 0.89 meters. 6 

5. SIMULATIONS 7 

The following session presents the results of simulations derived from the implementation of the 8 
model described above.  9 

The experiment layout and graph granularity adopted in the simulation network is presented in 10 
Figure 6. The distance between nodes is 1.0m and the Rn value is 0.5m. 11 

 12 
Figure 6 – Simulation Graph 13 

 14 

Pedestrians were generated with variable desired speed with average value of 1.0 m/s and standard 15 
deviation of 0.1 m/s. Similarly to the experiment, the simulations included two classes of 16 
pedestrians: pedestrians with fixed route and free route pedestrians. Pedestrians generation rate of 17 
the fixed route group was 1 pedestrian at each 2 seconds. The generation rate of the free route 18 
group was 1 pedestrian at each 5 seconds. 19 
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5.1. Calibration 1 

The first step of the calibration process was the adjustment of the social force model parameters. 2 
The calibration of the social force model allows the correct representation of the repulsive forces 3 
from obstacles and pedestrians. The parameters of the social force model used in this experiment 4 
were similar to those presented in Helbing and Molnár [1]. 5 

The key parameter for the calibration of the route choice process is I!"# (Equation 6). This 6 
parameter is a weighting factor between travel distance and the perceived impedance. The higher 7 
the value of I!"#, the lower the willingness of pedestrians to choose an alternative longer route. 8 
For the goals of this paper, the main calibration method was similar to Johansson et al. [33] where 9 
a microscopic simulation model was applied and calibrated by using pedestrian route data. Figure 7 10 
shows the results of five simulations with different I!"#values {0.3, 0.6, 0.9, 1.2, 1.5}. The 11 
increment of 0.3 in I!"# value was chosen as the minimal value showed a significant influence in 12 
the simulation outcomes. Density color map, average travel time and average distance traveled 13 
were adopted as calibration references to identify the best fit for the experiment data. Figure 6 14 
shows the density color map, average distance traveled and average travel time for each I!"# 15 
value, for free route pedestrians. 16 

 17 
Figure 7 – Calibration Process 18 

 19 
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5.2. Results 1 

In this case study, I!"# = 0.9 was defined as the best fit to calibrate the model. The average travel 2 
time of free route pedestrians in the experiment was 12.8 seconds with a standard deviation of 3.6 3 
seconds. The average distance traveled of the pedestrians at the experiment was 10.6 meters with 4 
standard deviation of 0.89 meters. The difference between the real average travel time and the 5 
simulation was 3.1% and for the average distance traveled was 1.8%.  6 

I!"# value variability has influence on the route distances and travel time. As I!"# increases the 7 
route distance tends to decrease. However, for higher values of I!"# the travel time tends to be 8 
extremely higher due to excessive congestion on shorter routes. Figure 8 shown the variability of 9 
travel times and distance for different values of I!"#. 10 

 11 
Figure 8 – Traveled distances 12 

 13 

The network in this experiment has four minimal routes {8-7-5-3-1}, {8-6-5-3-1}, {8-6-4-3-1}, {8-14 
6-4-2-1}. A minimal route choice model would assign pedestrians to any of these routes. However, 15 
in real circumstances pedestrians do not chose routes based only on distances. Pedestrians tend to 16 
avoid congested routes. This behavior was evident in experiment, as showed in color map (Figure 17 
5). Through adjustment of I!"#, calibrated model was able to realistically represent pedestrians’ 18 
decisions to avoid links congested by fixed route pedestrians. These results show impedance 19 
equations ability to model route choice under congested conditions. 20 

 21 

6.0. Validation 22 

Model validation is needed to assess model representativeness in different situations. Validation 23 
data were collected on the same network previously presented. The configuration of fixed route 24 
pedestrians and free route pedestrians remains, but now the number of pedestrians on fixed group 25 
was reduced to a half, remaining only 10 pedestrians. Reducing the number of pedestrians on fixed 26 
route reduce the flow generating gaps between pedestrians. Free route pedestrians are now 27 
expected to be more spread out on network comparing to previous experiment. 28 

Figure 9 shows two datasets collected from video analysis (Experiment run 1 and 2). For each run, 29 
volunteer's group performing free route pedestrians was completely changed. The heat maps were 30 
generated considering the traversed route for 20 free route pedestrians. 31 
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 1 
Figure 9 – Validation data 2 

 3 

As expected, free route pedestrians are now far most overspread in network compared with 4 
previous experiment. The simulation result (Figure 9) was run for this new scenery with previously 5 
calibrated value of Imax. (Imax = 0.9). Simulation heat map is quite similar to data collected. The 6 
effect of weaker flow of fixed route pedestrians can be observed on both collected and simulated 7 
heat maps. Free route pedestrians are still avoiding the fixed route pedestrians, but now, in a more 8 
subtly way. In the previous experiment, almost all free route pedestrians diverted from the fixed 9 
route immediately upon entering the scenario, choosing the link between the corners {8 - 7}. This 10 
avoiding behavior is now split into other links. Higher congested links are now between corners {5 11 
- 3 - 1}. These similarities between collected and simulated data show the model could be used to 12 
represent real pedestrians’ behavior. 13 

6. CONCLUSIONS 14 

Route choice is a complex process to model since most route selection strategies are based on 15 
subconscious decisions. Perception of distance and directness are most common reasons for 16 
choosing a particular route, however, other factors may also play an important role in this decision, 17 
such as density of people and people walking in the opposite direction. This model assumes cost of 18 
a route as a function of route length and impedance generated by other pedestrians. The impedance 19 
generated by friction between pedestrians is generated even before physical contact, representing 20 
the psychological tendency to avoid passing close to individuals with high relative velocity. This 21 
modeling approach provides a sound representation of pedestrian route choice dynamics. 22 
Simulations results were calibrated with real data and indicate this model provides a promising 23 
approach for real case applications. Balance between impedance and distance could be easily 24 
calibrated with a single parameter. The model approach seamlessly incorporates pedestrians social 25 
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force model into route choice decision process, and emerges as a promising approach for 1 
pedestrian route choice simulation. 2 
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