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ABSTRACT 
The lack of technical guidelines to define investment priority locations is one of the barriers to cycling in emerging 
countries, limiting the preparation of urban mobility plans even when legally required. The objective of this paper 
is to propose and compare two approaches, with and without considering the cyclists' perception of stress (LTS), 
to determine the relative importance of road segments in the network and to rank priority locations for investments 
in cycling projects. A case study was conducted in the city of Bariri (Brazil), for which the overall contribution of 
each network link to the identified cycling routes was mapped and ranked according to both criteria. The spatial 
distribution of differences between homologous ranks was also mapped, and the spatial autocorrelation between 
these differences was assessed by the Local Moran’s Index, allowing the identification of road segments of greater 
similarity and dissimilarity between the proposed approaches for resource allocation. 
 
RESUMO 
A carência de diretrizes técnicas que auxiliem na definição de locais com prioridade de investimentos é uma das 
barreiras ao ciclismo em países emergentes, limitando a preparação de planos de mobilidade urbana mesmo quando 
exigidos legalmente. O objetivo deste trabalho é propor e comparar duas abordagens, com e sem considerar a 
percepção do estresse de ciclistas (LTS), para determinação da importância relativa de segmentos viários na rede 
e hierarquização de projetos cicloviários prioritários. Um estudo de caso foi conduzido na cidade de Bariri (Brasil), 
para a qual foram mapeadas e ranqueadas, por ambos os critérios, as contribuições gerais de cada link da rede às 
rotas cicláveis identificadas. A distribuição espacial das diferenças de classificações homólogas também foi 
mapeada e a autocorrelação espacial entre essas diferenças foi avaliada pelo Índice de Moran Local, permitindo 
elencar trechos viários de maior similaridade e dissimilaridade entre as abordagens propostas para a alocação de 
recursos. 
 
1. INTRODUCTION 
Active transportation (i.e., walking and cycling) plays a key role in promoting sustainable urban 
mobility as it helps to mitigate problems arising from prioritizing motorized transport, such as 
congestion, increased space requirements, air pollution, etc. (Pucher and Buehler, 2012). 
However, changing the existing road system to make it bicycle- or pedestrian-friendly is a 
process that faces several technical, budgetary, political and cultural obstacles (Andrade et al., 
2016), especially in emerging countries. 

In Brazil, the Brazilian National Urban Mobility Policy (PNMU-Brazil) establishes that 
municipalities with more than 20,000 inhabitants must prepare urban mobility plans that favor 
collective and non-motorized transport, but since its institution by Law No. 12,587, of January 
3, 2012 (Brazil, 2012), the deadline for complying with the legal requirement has been 
repeatedly extended due to the inability of most municipalities, with only 14% of them having 
prepared their plans in full (Morais and Santos, 2020; SEMOB, 2021). Specifically with regard 
to cycling, one of the most likely reasons for this non-compliance is the lack of technical 
subsidies that guide cycling planning at the network level (Guerreiro et al., 2018). 



 

 

According to Rybarczyk and Wu (2010), cycling planning must be guided by both demand- 
and supply-based models. However, sequential demand modeling requires origin-destination 
surveys, which are rare in the Brazilian context (Brazilian Ministry of Regional Development, 
2019). In addition, although there are several Bicycle Compatibility Indexes (BCI) or Level of 
Service (BLOS) models in the literature (Harkey et al., 1998; Landis et al., 1997; TRB, 2010), 
these metrics are rarely used in cities in the Southern Hemisphere (Arellana et al., 2020) and 
require extensive and costly surveys for large-scale application (Callister and Lowry, 2013). 
However, decision-making regarding cycling investments in small- and medium-sized 
Brazilian cities can benefit from simpler methodologies for evaluating the operational quality 
of existing roads, such as those based on the level of cyclists' stress (Monari and Segantine, 
2020). 

Recently, several works in the literature have sought to rank cycling investments based on the 
centrality of road segments, that is, on their contribution to the routes preferred by cyclists to 
reach their potential travel destinations, using the bicycle Level of Traffic Stress (LTS) 
classification (Mekuria et al., 2012) for this purpose. Lowry et al. (2016) ranked priority cycling 
projects in Seattle (USA) based on the centrality of road segments, to which equivalence factors 
were assigned according to their LTS classification, bicycle accommodation and slope. Moran 
et al. (2018) ranked road sections in Philadelphia (USA) prioritizing investments in cycling, 
which, if properly addressed, would ensure greater network connectivity by enhancing low-
stress cycling routes. In Brazil, Monari and Segantine (2022) benefited from the LTS 
classification to propose cycling networks in two small-sized cities, prioritizing links in the 
network with greater centrality. Despite this, authors such as Ferenchak and Marshall (2020) 
emphasize the need for validation of the LTS classification through measures of the 
physiological stress of cyclists, and others, such as Zeile et al. (2016) or Rybarczyk et al. 
(2020), the need to include additional stress variables in models of this nature. 

This research aims to propose and compare two approaches to determine the relative importance 
(centrality) of network links and to rank priority locations (i.e., road segments) for investments 
in cycling projects. The first approach was developed without considering the cyclists' 
perception of stress, that is, assuming that they choose the shortest paths to reach their travel 
destinations. The second approach was developed considering the LTS classification and 
additional stress variables not included in the original model to identify cycling routes. A case 
study was conducted in the city of Bariri (Brazil). 

To achieve this goal, the two following Research Questions must be answered: 

 Are there differences between priority locations for cycling investments based on the shortest 
paths and the least stressful routes for cyclists? 
 What are the locations with the greatest similarity and dissimilarity in terms of their relative 
importance to cycling when evaluated by both criteria described? 

2. METHOD 
This section presents the research method and is subdivided into i) Cycling routes, ii) Centrality, 
iii) Ranking of centralities and iv) Case study data. QGIS 3.8.2 was used for geoprocessing the 
spatial data. 

 



 

 

2.1. Cycling routes 
Distance or travel time are decisive factors in cyclists' route choice (Menghini et al., 2010). 
Identifying the shortest path between an origin-destination pair is a process that benefits from 
Dijkstra's (1959) algorithm (based on graph theory), which has often been applied to GIS-
assisted cycling planning to identify routes that minimize the sum of impedances associated 
with the BCI (Klobucar and Fricker, 2007), the BLOS (Lowry et al., 2012) or the LTS (Monari 
et al., 2018). 

In this research, impedances were assigned to every link in the network based on the two 
following strategies presented by Equations 1 and 2. 

𝑐 , = 𝐿   (1) 
𝑐 , = 𝐿 × 𝑓 ,  (2) 

where 𝑐 ,  is the distance-based cycling impedance for link e; 𝑐 ,  is the stress-based 
cycling impedance for link e; 𝐿  is length of the link e; and 𝑓 ,  is the stress factor for link 
e. 

2.1.1. Stress factor 
Tables 1 and 2 present, in this order, the criteria for the LTS classification of mixed traffic 
sections (original) and bike lanes (updated from 2017), both subdivided into 4 levels of traffic 
stress (in which LTS1 is the least stressful and LTS4 the most) (Mekuria et al., 2012; Furth, 
2017). Equations 3 to 6, in turn, summarize the changes proposed by Rodrigues et al. (2022) to 
the LTS classification, which follow the preliminary assessment to include three other stress 
variables in the form of Additional Levels of Traffic Stress (ALTS): i) steep slopes, ii) existence 
of obstacles along the road and iii) presence of roundabouts. We only considered bus stops 
(Beura et al., 2018) and on-street vehicle parking rates greater than 30% (Harkey et al., 1998) 
as obstacles along the road. 

Table 1: LTS in mixed traffic (Source: Mekuria et al., 2012) 
Speed limit (km/h) Street width 
 2-3 lanes 4-5 lanes ≥ 6 lanes 
Up to 40 LTS 1 or 2 a LTS 3 LTS 4 
50 LTS 2 or 3 a LTS 4 LTS 4 
60 or higher LTS 4 LTS 4 LTS 4 

a Lower value is assigned to road segments without a marked centerline or to residential streets with fewer than 3 
lanes; higher value is assigned otherwise. 

Table 2: LTS criteria for bike lane classification (Source: Furth, 2017) 
Number of lanes per direction Bike lane width Prevailing speed (km/h) 
  ≤ 40 50 60 65 70 ≥ 80 
1 ≥ 1.80 m 1 2 2 3 3 3 
 1.20-1.60 m 2 2 2 3 3 4 
2 ≥ 1.80 m 2 2 2 3 3 3 
 1.20-1.60 m 2 2 2 3 3 4 
3 Any width 3 3 3 4 4 4 

b Includes any marked buffer next to the bike lane. 

𝐿𝑇𝑆 = 𝑚𝑖𝑛{(𝐿𝑇𝑆 + 𝐴𝐿𝑇𝑆 + 𝐴𝐿𝑇𝑆 + 𝐴𝐿𝑇𝑆 ); 4} (3) 



 

 

𝐴𝐿𝑇𝑆 =

0, if − 3% < slope < 3%
1, if slope ≤ − 3% 
2, if slope ≥ 3%

 (4) 

𝐴𝐿𝑇𝑆 =
1, if there are obstacles along the road
0, otherwise  

 (5) 

𝐴𝐿𝑇𝑆 =
1, if there is a roundabout
0, otherwise  

 (6) 

where 𝐴𝐿𝑇𝑆 , 𝐴𝐿𝑇𝑆  and 𝐴𝐿𝑇𝑆  are, respectively, the Additional Levels of Traffic Stress 
for steep uphill or downhill slopes, existence of obstacles along the road and the presence of 
roundabouts. 

Stress factors are usually assigned to network links based on Marginal Rates of Substitution 
(MRS) associated with the maximum detour acceptable by cyclists from their shortest paths, in 
which values between 15% and 25% are suggested in the literature (Furth et al., 2016; Cervero 
et al., 2019). In this research, however, we sought to standardize the intervals between the four 
increasing LTS classifications by adopting a maximum detour rate of 30%, that is, from LTS 1 
to LTS 4, stress factors of 1.00, 1.10, 1.20 and 1.30 were respectively assigned. 

2.2. Centrality 
The centrality of a given link is defined as the number of times it is used in the routes identified 
between all origin-destination pairs in the network (Shimbel, 1953). Gravity-based centrality 
(or O-D centrality), in turn, can be calculated by weighting this contribution by the potential 
demand accumulated at each origin and by the attractiveness of each destination (McDaniel et 
al., 2014), as presented by Equations 7 to 10. 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 , = 𝜎 (𝑒) × 𝑀 × 𝑀

∈ , ∈ |

 (7) 

𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 , = 𝜎∗ (𝑒) × 𝑀 × 𝑀

∈ , ∈ |

 (8) 

𝜎 (𝑒) =
1, if link 𝑒 is used in 𝜎  

0, otherwise
 (9) 

𝜎∗ (𝑒) =
1, if link 𝑒 is used in 𝜎∗  

0, otherwise
 (10) 

where 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ,  is the distance-based centrality for link e; 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ,  is the 
stress-based centrality for link e; 𝜎  is the shortest path from i to j; 𝜎∗  is the low-stress path 
from i to j; 𝑀  and 𝑀  are, respectively, the multipliers for origin i and destination j; O is the set 
of all origins; J is the set of all destinations; 𝐷  is the network distance between i and j; and 𝛿 
is the reachable distance threshold for bicycles, adopted in this work as 5 km (Brazilian Ministry 
of Cities, 2007). 

2.2.1. Multipliers for origins 
Socioeconomic attributes of the population such as age, gender, income, etc. are determining 
factors in bicycle use (Sener et al., 2009). In this context, instead of the total population residing 
in each origin, the potential to generate bicycle trips was quantified by the respective latent 
cycling demand, according to Equations 11 and 12. The weighting factors for each age-income 
combination of the population (Table 3) are based on the profile of cyclists in small-sized 
Brazilian cities (such as the case study) (Soares and Guth, 2018; Monari and Segantine, 2022). 



 

 

𝑞 = 𝑦 × 𝑝 ,  (11) 

𝑀 =
𝑞

∑ 𝑞∈
 (12) 

where 𝑞  is the latent cycling demand at origin i; 𝑦  is the weighting factor for age-income 
combination k; and 𝑝 ,  is the population belonging to age-income combination k at origin i. 

Table 3: Weighting factors (𝑦 ) for age-income combinations (𝑘) of the population 
(Source: Adapted from Monari and Segantine, 2022) 

Income Age 
 10-29 30-49 50-69 ≥ 70 
≤ 2 minimum wages 27.5 (1) 20.5 (4) 13.6 (7) 2.2 (10) 
2-5 minimum wages 6.7 (2) 5.0 (5) 3.3 (8) 0.5 (11) 
> 5 minimum wages 8.9 (3) 6.7 (6) 4.4 (9) 0.7 (12) 

2.2.2. Multipliers for destinations 
Multipliers for destinations were defined according to their respective cycling attractiveness 
(Equations 13 and 14) based on the weighting system presented in Table 4, adapted from the 
work of McNeil (2011).  

𝑎 = 𝑦 × 𝑢 ,  (13) 

𝑀 =
𝑎

∑ 𝑎∈
 (14) 

where 𝑎  is the cycling attractiveness of destination j; 𝑦  is the weighting factor for trip attractor 
l; and 𝑢 ,  is the number of trip attractors l at destination j. 

Table 4: Weighting system for trip attractors (Source: Adapted from McNeil, 2011) 
Classification Trip attractor (𝑙) 𝑦  

Industry/Factory Any industry/factory (1)  020.0  
Educational center Daycare (2)  002.5  

Preschool (3)  002.5  
Elementary school (4)  005.0  
High school (5)  005.0  
College (6)  005.0  

Leisure place Sports club (7)  010.0  
Park, square and open public space (8)  010.0  

Commercial place Trade in specific goods (9)  002.5  
Beauty salon, hairdresser, etc. (10)  002.5  
Clothing store (11)  005.0  
Restaurant, coffee shop, bar, etc. (12)  005.0  
Supermarket and grocery store (13)  005.0  

Other General services (post office, bank, etc.) (14)  005.0  
Religious organization (15)  005.0  
First aid station, hospital, etc. (16)  010.0  

Total   100.0  



 

 

Altogether, five classifications were proposed for trip attractors (including those related to 
work, which differs from the original proposal) to which equal weights were assigned, that is, 
20 out of a total of 100 points. Then, each classification was subdivided to consider the relative 
importance between trip attractors of the same nature (for example, a supermarket is expected 
to attract more bicycle trips than a beauty salon, therefore it should receive a greater weight), 
in addition to regrouping and including different facilities not considered in the base work. 

2.3. Ranking of centralities 
To assess whether the data present similar spatial patterns in the centrality of each network link, 
we benefited from an adaptation of the methodology proposed by Conrow et al. (2018). First, 
each dataset (distance-based and stress-based centralities) was ranked. Then, a single value 
representing this similarity or dissimilarity between homologous centralities was calculated for 
each link in the network through Equation 15, defined as Rank Difference (RD). Finally, the 
Local Moran’s Index was also calculated for each network link, according to Equation 16, to 
identify Local Indicators of Spatial Association (LISA), that is, clusters of positive spatial 
association (High-High or Low-Low) or outliers of negative spatial association (Low-High or 
High-Low) of RD (Anselin, 1995). For this last step, we used the free software called GeoDa. 

𝑅𝐷 = 𝑅 , − 𝑅 ,  (15) 

𝐼 =
(𝑅𝐷 − 𝑅𝐷)

𝑣
× 𝑤 × (𝑅𝐷 − 𝑅𝐷) (16) 

where 𝑅𝐷  and 𝑅𝐷  are, respectively, the rank differences for links e and d; 𝑅 ,  is the 
distance-based rank for link e; 𝑅 ,  is the stress-based rank for link e; 𝐼  is the Local 
Moran’s Index for link e; m is the number of links in the network; 𝑤  is equal to 1 when link 
e is connected to link d, and 0 otherwise; 𝑅𝐷 is the rank differences’ mean; and 𝑣 is the rank 
differences’ variance. 

2.4. Case study data 
Bariri is a city in the State of São Paulo (Brazil) with an estimated population of approximately 
36,000 inhabitants (IBGE, 2021). Figure 1 shows the case study data required for the 
application of the method. 

Road system information was obtained from collaborative mapping (OpenStreetMap, or OSM). 
We increased the original network by vectorizing bike lanes and shared-used spaces that did 
not exist in the OSM features, totaling 2,261 links. Furthermore, for routing purposes only, we 
duplicated the two-way road segments, so that each overlapping link represented a single traffic 
flow direction and the up and down movements in the network could be evaluated separately. 
The posted speed limit (or average speed measured in the field, for places where this 
information was previously available), the number of traffic lanes and the existence of 
centerlines, obstacles and roundabouts (dummy variables) were assigned to each link in the 
network based on in situ visits and ground-level navigation by Google StreetView. 

Altimetric data were extracted from the 30-meter spatial resolution TOPODATA DEM 
provided by the Brazilian National Institute for Space Research (INPE-Brazil), and aggregated 
population data (income and age) by census tracts were obtained from the results of the 2010 
Brazilian Demographic Census (IBGE-Brazil), which we transferred to a set of regular 
georeferenced cells also made available by the IBGE (statistical grid) through the intersection 
between the two vector layers. Regarding the trip attractors, 977 potential bicycle travel 



 

 

destinations were georeferenced by searching for these facilities on the Google Maps platform, 
which we also transferred to the statistical grid through the density of points in each polygon. 

 
Figure 1: Case study data 

3. RESULTS AND DISCUSSION 
The results from the application of the method in the case study allow numerical and visual 
comparisons between the distance-based and stress-based centralities of each link in the 



 

 

network of the city of Bariri, as shown in Figure 2. Furthermore, the results also suggest a strong 
positive correlation between centralities for both data sets (0.83). 

 
Figure 2: Distance-based and stress-based centralities of each link in the Bariri network 

Network links with great contribution to the identified routes are expected to receive large flows 
of cyclists and should be prioritized in future cycling projects and in resource allocation. 
Therefore, addressing our first Research Question, the highest centrality values are observed in 
the city center regardless of the criterion used, which is expected due to the higher concentration 
of trip attractors in this region. High centrality values are also observed for both data sets in 
most of the city’s secondary streets, which connect peripheral neighborhoods to the city center. 
However, the incorporation of cyclists' perception of stress in the routing algorithm reflects in 
large differences in centrality in some other streets of greater functional hierarchy. For example, 
on Sérgio Forcin Avenue (Figure 3), the high speed of motorized traffic (despite the regulated 
limit of 30 km/h) and the presence of a roundabout (ALTS) cause a great number of low-stress 
cycling routes to detour to Valfredo Alves de Souza and José Furcin streets, resulting in 
increased centrality of the latter when compared to their distance-based centralities. 

In total, 450 links (out of 2,261 links) in the Bariri network have zero distance-based centrality, 
and 441 have zero stress-based centrality, with 412 links in common between the two criteria 
having no relative importance in the network. Among the 29 network links used in the shortest 
paths but not in the low-stress cycling routes, only 1 has obstacles along the road (high parking 
rate) and 2 have roundabouts, but ALTS due to steep slopes were assigned to 14 of them (8 for 
uphill and 6 for downhill slopes greater than 3%). The simultaneous assignment of ALTS only 
occurred for 1 network link, originally classified as LTS 2 and which was reclassified as LTS 
4. 



 

 

 
Figure 3: Distance-based and stress-based centralities of Sérgio Forcin Avenue 

Addressing our second Research Question, all links in the network were ranked according to 
their centrality for both data sets (the link with the highest centrality was ranked 1st, that is, with 
the highest priority for cycling investments; the link with the second highest centrality was 
ranked as 2nd, and so on). Then, homologous rank differences were computed (RD), thus 
identifying similarities in the priority level for cycling investments and mismatches between 
distance-based and stress-based centralities. Figure 4 shows the spatial distribution and the 
cluster and significance maps of these rank differences. 

Using the graduated symbology in five classes of equal amplitude and their graphic 
differentiation by both size and colors, the 50 main links can be clearly observed in the network 
of the city of Bariri for which mismatches in the priority of cycling investment are expected. In 
20 of these links, stress-based centralities prevail over distance-based ones, among which 16 
are classified as LTS 1, 3 as LTS 2, and only 1 as LTS 3, in the latter case, originally classified 
as LTS 1, but reclassified due to its slope steeper than 5%. As for the other 30 network links, 
in which stress-based centralities are underestimated when compared to distance-based 
centralities, 11 of them are classified as LTS 3 or 4 (among which 9 were assigned ALTS, 
mostly due to steep slopes). 

The Local Moran’s Index suggests 562 significant locations in terms of spatial association of 
rank differences. For 433 of these locations, similarity is observed in the priority level for 
cycling investments (Low-Low), mostly located in peripheral regions of the city of Bariri, and 
among which 205 have zero centrality regardless of the criterion used (distance or stress). 
Another 64 network links, however, are characterized by dissimilarity in the priority level for 
cycling investments (High-High), 3 and 8 of them located, respectively, in sections of primary 
and secondary streets classified as LTS 3 or 4; and all others on residential streets (12 of which 
are also classified as highly stressful for cycling due to ALTS). Finally, 65 outliers of negative 
spatial association (Low-High) contiguous to the dissimilarity localities are observed. No High-
Low outliers are observed for the case study. 



 

 

 
Figure 4: Spatial distribution and cluster map of the rank differences 

4. CONCLUSION 
This paper introduced and compared two approaches, with and without incorporating stress 
variables, to define priority locations for cycling investments and that can help to prepare urban 
mobility plans, especially in emerging countries. The output consists of mapping the centrality 
of each network link, from which the most relevant cycling projects can be ranked. These 
projects, in turn, can gradually evolve into continuous cycling networks. 

The application of both approaches in a case study led to a discussion on some strengths and 
limitations of the research. Regarding the strengths, the method is easy to apply, and it benefits 
from open data and free software. As for the limitations, there is considerable agreement 
between homologous centralities measured with or without stress variables, which suggests that 
the traffic stress of this particular case study was not high enough to be considered relevant. 
These results, however, may not be extended to cities where there are arterial roads, or even 
those characterized by hilly terrain. Thus, it is suggested that future work should reproduce this 
research method, also for these cases. 
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